An Elementary Proof of the Irrationality of Tschakaloff Series

نویسندگان

  • Wadim Zudilin
  • W. ZUDILIN
چکیده

We present a new proof of the irrationality of values of the series Tq(z) = ∑∞ n=0 z nq−n(n−1)/2 in both qualitative and quantitative forms. The proof is based on a hypergeometric construction of rational approximations to Tq(z).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the irrationality of factorial series II

In this paper we give irrationality results for numbers of the form ∑∞ n=1 an n! where the numbers an behave like a geometric progression for a while. The method is elementary, not using differentiation or integration. In particular, we derive elementary proofs of the irrationality of π and em for Gaussian integers m 6= 0.

متن کامل

An Elementary Proof of Ap Ery's Theorem

We present a new ‘elementary’ proof of the irrationality of ζ(3) based on some recent ‘hypergeometric’ ideas of Yu. Nesterenko, T. Rivoal, and K. Ball, and on Zeilberger’s algorithm of creative telescoping. A question of an arithmetic nature of the values of Riemann’s zeta function

متن کامل

Linear independence of values of Tschakaloff series

In this note we investigate arithmetic properties of values of the Tschakaloff function Tq(z) = P∞ ν=0 q −ν(ν+1)/2zν , |q| > 1. One of the open problems is proving linear independence of the values of Tq(z) with different q. The only result obtained in this direction in [1] is very restrictive. We refer an interested reader to the survey [2] for an account of known linear and algebraic independ...

متن کامل

Little q-Legendre polynomials and irrationality of certain Lambert series

Certain q-analogs hp(1) of the harmonic series, with p = 1/q an integer greater than one, were shown to be irrational by Erdős [9]. In 1991–1992 Peter Borwein [4] [5] used Padé approximation and complex analysis to prove the irrationality of these q-harmonic series and of q-analogs lnp(2) of the natural logarithm of 2. Recently Amdeberhan and Zeilberger [1] used the qEKHAD symbolic package to f...

متن کامل

q-Apery Irrationality Proofs by q-WZ Pairs

w x Ž . In 1948, Paul Erdos E1 proved the irrationality of h 1 . Recently, ̋ 2 w x Peter Borwein used Pade approximation techniques B1 and some coḿ w x Ž . plex analysis methods B2 to prove the irrationality of both h 1 and q Ž . Ln 2 . Here we present a proof in the spirit of Apery’s magnificent proof ́ q Ž . w x of the irrationality of z 3 A , which was later delightfully accounted by w x Alf v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004